Loading...
3IA Côte d'Azur - Interdisciplinary Institute for Artificial Intelligence
3IA Côte d'Azur est l'un des quatre "Instituts interdisciplinaires d'intelligence artificielle" créés en France en 2019. Son ambition est de créer un écosystème innovant et influent au niveau local, national et international. L'institut 3IA Côte d'Azur est piloté par Université Côte d'Azur en partenariat avec les grands partenaires de l'enseignement supérieur et de la recherche de la région niçoise et de Sophia Antipolis : CNRS, Inria, INSERM, EURECOM, SKEMA Business School. L'institut 3IA Côte d'Azur est également soutenu par l'ECA, le CHU de Nice, le CSTB, le CNES, l'Institut Data ScienceTech et l'INRAE. Le projet a également obtenu le soutien de plus de 62 entreprises et start-ups.
Derniers dépôts
-
Henning Wachsmuth, Gabriella Lapesa, Elena Cabrio, Anne Lauscher, Joonsuk Park, et al.. Argument Quality Assessment in the Age of Instruction-Following Large Language Models. Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation, LREC/COLING 2024, May 2024, Torino, Italy. ⟨hal-04787971⟩
-
Yingyu Yang, Marie Rocher, Pamela Moceri, Maxime Sermesant. Uncertainty-Based Multi-modal Learning for Myocardial Infarction Diagnosis Using Echocardiography and Electrocardiograms. The 5th International Workshop of Advances in Simplifying Medical UltraSound (ASMUS), Oct 2024, Marrakech, Morocco. pp.177-186, ⟨10.1007/978-3-031-73647-6_17⟩. ⟨hal-04776612⟩
Documents en texte intégral
706
Notices
313
Statistiques par discipline
Mots clés
Unsupervised learning
Deep Learning
Distributed optimization
Semantic web
Electrocardiogram
Linked Data
Echocardiography
CNN
COVID-19
Image segmentation
Visualization
Autoencoder
Image fusion
Diffusion MRI
Convolutional neural network
Consensus
FPGA
NLP Natural Language Processing
Linked data
Dimensionality reduction
Argument Mining
Hyperspectral data
Coxeter triangulation
Graph neural networks
Correlation matrices
Deep learning
Diffusion strategy
Spiking Neural Networks
Neural networks
Super-resolution
OPAL-Meso
Knowledge graphs
Privacy
Apprentissage profond
Topological Data Analysis
Adversarial classification
ECG
Computational Topology
Ontology Learning
Domain adaptation
Macroscopic traffic flow models
Atrial Fibrillation
Chernoff information
Clinical trials
Latent block model
Artificial Intelligence
Explainable AI
Convergence analysis
Semantic segmentation
Geometric graphs
Healthcare
Persistent homology
Uncertainty
Alzheimer's disease
Hyperbolic systems of conservation laws
Segmentation
Convolutional Neural Networks
Multi-Agent Systems
Predictive model
Spiking neural networks
Change point detection
Federated learning
MRI
Anomaly detection
Arguments
Computing methodologies
SPARQL
Information Extraction
Optimization
Clustering
Semantic Web
Web of Things
Differential privacy
Brain-inspired computing
Federated Learning
Grammatical Evolution
RDF
Knowledge graph
Extreme value theory
Isomanifolds
Convolutional neural networks
Excursion sets
Dense labeling
Autonomous vehicles
Fluorescence microscopy
Contrastive learning
Computer vision
Electrophysiology
Atrial fibrillation
Cable-driven parallel robot
53B20
Artificial intelligence
Co-clustering
Biomarkers
Graph signal processing
Extracellular matrix
Data augmentation
Machine learning
Argument mining
Sparsity