multipers: Multiparameter Persistence for Machine Learning - 3IA Côte d’Azur – Interdisciplinary Institute for Artificial Intelligence
Article Dans Une Revue Journal of Open Source Software Année : 2024

multipers: Multiparameter Persistence for Machine Learning

Résumé

multipers is a Python library for Topological Data Analysis, focused on Multiparameter Persistence computation and visualizations for Machine Learning. It features several efficient computational and visualization tools, with integrated, easy to use, auto-differentiable Machine Learning pipelines, that can be seamlessly interfaced with scikit-learn (Pedregosa et al., 2011) and PyTorch (Paszke et al., 2019). This library is meant to be usable for non-experts in Topological or Geometrical Machine Learning. Performance-critical functions are implemented in C++ or in Cython (Behnel et al., 2011-03/2011-04), are parallelizable with TBB (Robison, 2011), and have Python bindings and interface. It can handle a very diverse range of datasets that can be framed into a (finite) multi-filtered simplicial or cell complex, including, e.g., point clouds, graphs, time series, images, etc.
Fichier principal
Vignette du fichier
10.21105.joss.06773.pdf (3.21 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
licence

Dates et versions

hal-04801544 , version 1 (25-11-2024)

Licence

Identifiants

Citer

David Loiseaux, Hannah Schreiber. multipers: Multiparameter Persistence for Machine Learning. Journal of Open Source Software, 2024, 9 (103), pp.6773. ⟨10.21105/joss.06773⟩. ⟨hal-04801544⟩
0 Consultations
0 Téléchargements

Altmetric

Partager

More