Article Dans Une Revue Journal of Machine Learning Research Année : 2025

A Random Matrix Approach to Low-Multilinear-Rank Tensor Approximation

Résumé

This work presents a comprehensive understanding of the estimation of a planted low-rank signal from a general spiked tensor model near the computational threshold. Relying on standard tools from the theory of large random matrices, we characterize the large-dimensional spectral behavior of the unfoldings of the data tensor and exhibit relevant signal-to-noise ratios governing the detectability of the principal directions of the signal. These results allow to accurately predict the reconstruction performance of truncated multilinear SVD (MLSVD) in the non-trivial regime. This is particularly important since it serves as an initialization of the higher-order orthogonal iteration (HOOI) scheme, whose convergence to the best low-multilinear-rank approximation depends entirely on its initialization. We give a sufficient condition for the convergence of HOOI and show that the number of iterations before convergence tends to 1 in the large-dimensional limit.
Fichier principal
Vignette du fichier
2402.03169v3.pdf (856) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
licence

Dates et versions

hal-04673321 , version 1 (20-08-2024)
hal-04673321 , version 2 (30-01-2025)

Licence

Identifiants

Citer

Hugo Lebeau, Florent Chatelain, Romain Couillet. A Random Matrix Approach to Low-Multilinear-Rank Tensor Approximation. Journal of Machine Learning Research, 2025, 26 (7). ⟨hal-04673321v2⟩
155 Consultations
30 Téléchargements

Altmetric

Partager

More